2,550 research outputs found

    Spatial storage of discrete dark solitons

    Full text link
    The interaction between a mobile discrete dark soliton (DDS) and impurities in one-dimensional nonlinear (Kerr) photonic lattices is studied. We found that the scattering is an inelastic process where the DDS can be reflected or transmitted depending on its transversal speed and the strength of the impurities. In particular, in the reflection regime, the DDS increases its transversal speed after each scattering. A method for spatial storage of DDS solutions using two impurities is discussed, where the soliton can be trapped within a storage region until it reaches the critical speed needed to be transmitted. We show, numerically, that this method allows the storage of multiple DDS simultaneously.Comment: 6 pages and 6 figure

    Classical Emergence of Intrinsic Spin-Orbit Interaction of Light at the Nanoscale

    Full text link
    Traditionally, in macroscopic geometrical optics intrinsic polarization and spatial degrees of freedom of light can be treated independently. However, at the subwavelength scale these properties appear to be coupled together, giving rise to the spin-orbit interaction (SOI) of light. In this work we address theoretically the classical emergence of the optical SOI at the nanoscale. By means of a full-vector analysis involving spherical vector waves we show that the spin-orbit factorizability condition, accounting the mutual influence between the amplitude (spin) and phase (orbit), is fulfilled only in the far-field limit. On the other side, in the near-field region, an additional relative phase introduces an extra term that hinders the factorization and reveals an intricate dynamical behavior according to the SOI regime. As a result, we find a suitable theoretical framework able to capture analytically the main features of intrinsic SOI of light. Besides allowing for a better understanding into the mechanism leading to its classical emergence at the nanoscale, our approach may be useful in order to design experimental setups that enhance the response of SOI-based effects.Comment: 10 pages, 5 figure

    Near-Field Directionality Beyond the Dipole Approximation: Electric Quadrupole and Higher-Order Multipole Angular Spectra

    Get PDF
    Within the context of spin-related optical phenomena, the near-field directionality is generally understood from the quantum spin Hall effect of light, according to which the transverse spin of surface or guided modes is locked to the propagation direction. So far, most previous works have been focused on the spin properties of circularly polarized dipolar sources. However, in near-field optics, higher-order multipole sources (e.g., quadrupole, octupole, and so on) might become relevant, so a more in-depth formulation would be highly valuable. Building on the angular spectrum representation, we provide a general, analytical, and ready-to-use treatment in order to address the near-field directionality of any multipole field, particularizing to the electric quadrupole case. Besides underpinning and upgrading the current framework on spin-dependent directionality, our results may open up new perspectives for engineering light-matter coupling at the nanoscale.Comment: 7 pages, 2 figures. Supplemental Material (19 pages). Supplemental tools (calculator of angular spectra and animation) available at https://doi.org/10.5281/zenodo.267790

    Diffusion in infinite and semi-infinite lattices with long-range coupling

    Full text link
    We prove that for a one-dimensional infinite lattice, with long-range coupling among sites, the diffusion of an initial delta-like pulse in the bulk, is ballistic at all times. We obtain a closed-form expression for the mean square displacement (MSD) as a function of time, and show some cases including finite range coupling, exponentially decreasing coupling and power-law decreasing coupling. For the case of an initial excitation at the edge of the lattice, we find an approximate expression for the MSD that predicts ballistic behavior at long times, in agreement with numerical results.Comment: 4 pages, 5 figures, submitted for publicatio

    Construction and Calibration of a Low-Cost 3D Laser Scanner with 360◦ Field of View for Mobile Robots

    Get PDF
    Navigation of many mobile robots relies on environmental information obtained from three-dimensional (3D) laser scanners. This paper presents a new 360◦ field-of-view 3D laser scanner for mobile robots that avoids the high cost of commercial devices. The 3D scanner is based on spinning a Hokuyo UTM- 30LX-EX two-dimensional (2D) rangefinder around its optical center. The proposed design profits from lessons learned with the development of a previous 3D scanner with pitching motion. Intrinsic calibration of the new device has been performed to obtain both temporal and geometric parameters. The paper also shows the integration of the 3D device in the outdoor mobile robot Andabata.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Direct measurement of superdiffusive and subdiffusive energy transport in disordered granular chains

    Get PDF
    The study of energy transport properties in heterogeneous materials has attracted scientific interest for more than a century, and it continues to offer fundamental and rich questions. One of the unanswered challenges is to extend Anderson theory for uncorrelated and fully disordered lattices in condensed-matter systems to physical settings in which additional effects compete with disorder. Specifically, the effect of strong nonlinearity has been largely unexplored experimentally, partly due to the paucity of testbeds that can combine the effect of disorder and nonlinearity in a controllable manner. Here we present the first systematic experimental study of energy transport and localization properties in simultaneously disordered and nonlinear granular crystals. We demonstrate experimentally that disorder and nonlinearity --- which are known from decades of studies to individually favor energy localization --- can in some sense "cancel each other out", resulting in the destruction of wave localization. We also report that the combined effect of disorder and nonlinearity can enable the manipulation of energy transport speed in granular crystals from subdiffusive to superdiffusive ranges.Comment: main text + supplementary informatio

    Cladobotryum mycophilum as Potential Biocontrol Agent

    Get PDF
    A study was conducted to explore the efficacy of potential biocontrol agent Cladobotryum mycophilum against different phytopathogenic fungi. The growth rates of 24 isolates of C. mycophilum were determined, and their antagonistic activity was analysed in vitro and in vivo against Botrytis cinerea, Fusarium oxysporum f. sp. radicis-lycopersici, Fusarium oxysporum f.sp. cucumerinum, Fusarium solani, Phytophthora parasitica, Phytophthora capsici, Pythium aphanidermatum and Mycosphaerella melonis. Most isolates grow rapidly, reaching the opposite end of the Petri dish within 72–96 h. Under dual-culture assays, C. mycophilum showed antagonistic activity in vitro against all phytopathogenic fungi tested, with mycelial growth inhibition ranging from 30 to 90% against all the different phytopathogens tested. Similarly, of all the selected isolates, CL60A, CL17A and CL18A significantly (p < 0.05) reduced the disease incidence and severity in the plant assays compared to the controls for the different pathosystems studied. Based on these results, we conclude that C. mycophilum can be considered as a potential biological control agent in agriculture. This is the first study of Cladobotryum mycophilum as a biological control agent for different diseases caused by highly relevant phytopathogens in horticultur

    Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides

    Full text link
    This is the peer reviewed version of the following article: Vázquez-Lozano, J. E., Martínez, A., Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides. Laser & Photonics Reviews 2020, 14, 1900422, which has been published in final form at https://doi.org/10.1002/lpor.201900422. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Chiral spectroscopy is a powerful technique enabling to identify optically the chirality of matter. So far, most experiments to check the chirality of matter or nanostructures have been performed through arrangements wherein both the optical excitation and detection are realized via circularly polarized light propagating in free space. However, for the sake of miniaturization, it would be desirable to perform chiral spectroscopy in photonic integrated platforms, with the additional benefit of massive parallel detection, low¿cost production, repeatability, and portability. Here it is shown that all¿dielectric photonic waveguides can support chiral modes under proper combination of fundamental eigenmodes. Two mainstream configurations are investigated: a dielectric wire with square cross section and a slotted waveguide. Three different scenarios in which such waveguides could be used for chiral detection are numerically analyzed: waveguides as near¿field probes, evanescent¿induced chiral fields, and chiroptical interaction in void slots. In all the cases, a metallic nanohelix is considered as a chiral probe, though all the approaches can be extended to other kinds of chiral nanostructures as well as matter. These results establish that chiral applications such as sensing and spectroscopy could be realized in standard integrated optics, in particular, with silicon-based technology.The authors thank S. Lechago for valuable comments and technical support with the numerical simulations. This work was partially supported by funding from the European Commission Project THOR H2020-EU-829067. A.M. also acknowledges funding from Generalitat Valenciana (Grant No. PROMETEO/2019/123) and Spanish Ministry of Science, Innovation and Universities (Grant No. PRX18/00126).Vázquez-Lozano, JE.; Martínez Abietar, AJ. (2020). Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides. Laser & Photonics Review. 14(9):1-12. https://doi.org/10.1002/lpor.201900422S112149FDA’S policy statement for the development of new stereoisomeric drugs. (1992). Chirality, 4(5), 338-340. doi:10.1002/chir.530040513Hutt, A. J., & Tan, S. C. (1996). Drug Chirality and its Clinical Significance. Drugs, 52(Supplement 5), 1-12. doi:10.2165/00003495-199600525-00003Smith, S. W. (2009). Chiral Toxicology: It’s the Same Thing…Only Different. Toxicological Sciences, 110(1), 4-30. doi:10.1093/toxsci/kfp097Naaman, R., Paltiel, Y., & Waldeck, D. H. (2019). Chiral molecules and the electron spin. Nature Reviews Chemistry, 3(4), 250-260. doi:10.1038/s41570-019-0087-1Lodahl, P., Mahmoodian, S., Stobbe, S., Rauschenbeutel, A., Schneeweiss, P., Volz, J., … Zoller, P. (2017). Chiral quantum optics. Nature, 541(7638), 473-480. doi:10.1038/nature21037Göhler, B., Hamelbeck, V., Markus, T. Z., Kettner, M., Hanne, G. F., Vager, Z., … Zacharias, H. (2011). Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA. Science, 331(6019), 894-897. doi:10.1126/science.1199339Zhu, H., Yi, J., Li, M.-Y., Xiao, J., Zhang, L., Yang, C.-W., … Zhang, X. (2018). Observation of chiral phonons. Science, 359(6375), 579-582. doi:10.1126/science.aar2711Cameron, R. P., Barnett, S. M., & Yao, A. M. (2012). Optical helicity, optical spin and related quantities in electromagnetic theory. New Journal of Physics, 14(5), 053050. doi:10.1088/1367-2630/14/5/053050Alpeggiani, F., Bliokh, K. Y., Nori, F., & Kuipers, L. (2018). Electromagnetic Helicity in Complex Media. Physical Review Letters, 120(24). doi:10.1103/physrevlett.120.243605Tang, Y., & Cohen, A. E. (2010). Optical Chirality and Its Interaction with Matter. Physical Review Letters, 104(16). doi:10.1103/physrevlett.104.163901Bliokh, K. Y., & Nori, F. (2011). Characterizing optical chirality. Physical Review A, 83(2). doi:10.1103/physreva.83.021803Tang, Y., & Cohen, A. E. (2011). Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light. Science, 332(6027), 333-336. doi:10.1126/science.1202817Barron, L. D. (2004). Molecular Light Scattering and Optical Activity. doi:10.1017/cbo9780511535468Hassey, R., Swain, E. J., Hammer, N. I., Venkataraman, D., & Barnes, M. D. (2006). Probing the Chiroptical Response of a Single Molecule. Science, 314(5804), 1437-1439. doi:10.1126/science.1134231Hendry, E., Carpy, T., Johnston, J., Popland, M., Mikhaylovskiy, R. V., Lapthorn, A. J., … Kadodwala, M. (2010). Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnology, 5(11), 783-787. doi:10.1038/nnano.2010.209Rhee, H., Choi, J. S., Starling, D. J., Howell, J. C., & Cho, M. (2013). Amplifications in chiroptical spectroscopy, optical enantioselectivity, and weak value measurement. Chemical Science, 4(11), 4107. doi:10.1039/c3sc51255jHo, C.-S., Garcia-Etxarri, A., Zhao, Y., & Dionne, J. (2017). Enhancing Enantioselective Absorption Using Dielectric Nanospheres. ACS Photonics, 4(2), 197-203. doi:10.1021/acsphotonics.6b00701Vázquez-Lozano, J. E., & Martínez, A. (2018). Optical Chirality in Dispersive and Lossy Media. Physical Review Letters, 121(4). doi:10.1103/physrevlett.121.043901Schäferling, M. (2017). Chiral Nanophotonics. Springer Series in Optical Sciences. doi:10.1007/978-3-319-42264-0Lee, S., Yoo, S., & Park, Q.-H. (2017). Microscopic Origin of Surface-Enhanced Circular Dichroism. ACS Photonics, 4(8), 2047-2052. doi:10.1021/acsphotonics.7b00479Barr, L. E., Horsley, S. A. R., Hooper, I. R., Eager, J. K., Gallagher, C. P., Hornett, S. M., … Hendry, E. (2018). Investigating the nature of chiral near-field interactions. Physical Review B, 97(15). doi:10.1103/physrevb.97.155418Collins, J. T., Kuppe, C., Hooper, D. C., Sibilia, C., Centini, M., & Valev, V. K. (2017). Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends. Advanced Optical Materials, 5(16), 1700182. doi:10.1002/adom.201700182Hentschel, M., Schäferling, M., Duan, X., Giessen, H., & Liu, N. (2017). Chiral plasmonics. Science Advances, 3(5). doi:10.1126/sciadv.1602735Govorov, A. O., Fan, Z., Hernandez, P., Slocik, J. M., & Naik, R. R. (2010). Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects. Nano Letters, 10(4), 1374-1382. doi:10.1021/nl100010vZhao, Y., Askarpour, A. N., Sun, L., Shi, J., Li, X., & Alù, A. (2017). Chirality detection of enantiomers using twisted optical metamaterials. Nature Communications, 8(1). doi:10.1038/ncomms14180Kang, L., Ren, Q., & Werner, D. H. (2017). Leveraging Superchiral Light for Manipulation of Optical Chirality in the Near-Field of Plasmonic Metamaterials. ACS Photonics, 4(6), 1298-1305. doi:10.1021/acsphotonics.7b00057García-Etxarri, A., & Dionne, J. A. (2013). Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Physical Review B, 87(23). doi:10.1103/physrevb.87.235409Hendry, E., Mikhaylovskiy, R. V., Barron, L. D., Kadodwala, M., & Davis, T. J. (2012). Chiral Electromagnetic Fields Generated by Arrays of Nanoslits. Nano Letters, 12(7), 3640-3644. doi:10.1021/nl3012787Meinzer, N., Hendry, E., & Barnes, W. L. (2013). Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures. Physical Review B, 88(4). doi:10.1103/physrevb.88.041407Nesterov, M. L., Yin, X., Schäferling, M., Giessen, H., & Weiss, T. (2016). The Role of Plasmon-Generated Near Fields for Enhanced Circular Dichroism Spectroscopy. ACS Photonics, 3(4), 578-583. doi:10.1021/acsphotonics.5b00637J.Lasa‐Alonso D. R.Abujetas A.Nodar J. A.Dionne J. J.Sáenz G.Molina‐Terriza J.Aizpurua A.García‐Etxarri arXiv:2003.07653 [physics.optics] 2020.Solomon, M. L., Hu, J., Lawrence, M., García-Etxarri, A., & Dionne, J. A. (2018). Enantiospecific Optical Enhancement of Chiral Sensing and Separation with Dielectric Metasurfaces. ACS Photonics, 6(1), 43-49. doi:10.1021/acsphotonics.8b01365Graf, F., Feis, J., Garcia-Santiago, X., Wegener, M., Rockstuhl, C., & Fernandez-Corbaton, I. (2019). Achiral, Helicity Preserving, and Resonant Structures for Enhanced Sensing of Chiral Molecules. ACS Photonics, 6(2), 482-491. doi:10.1021/acsphotonics.8b01454Hu, J., Lawrence, M., & Dionne, J. A. (2019). High Quality Factor Dielectric Metasurfaces for Ultraviolet Circular Dichroism Spectroscopy. ACS Photonics, 7(1), 36-42. doi:10.1021/acsphotonics.9b01352Zhao, X., & Reinhard, B. M. (2019). Switchable Chiroptical Hot-Spots in Silicon Nanodisk Dimers. ACS Photonics, 6(8), 1981-1989. doi:10.1021/acsphotonics.9b00388Reyes Gómez, F., Oliveira, O. N., Albella, P., & Mejía-Salazar, J. R. (2020). Enhanced chiroptical activity with slotted high refractive index dielectric nanodisks. Physical Review B, 101(15). doi:10.1103/physrevb.101.155403Gómez, F. R., Mejía-Salazar, J. R., & Albella, P. (2019). All-Dielectric Chiral Metasurfaces Based on Crossed-Bowtie Nanoantennas. ACS Omega, 4(25), 21041-21047. doi:10.1021/acsomega.9b02381Mohammadi, E., Tsakmakidis, K. L., Askarpour, A. N., Dehkhoda, P., Tavakoli, A., & Altug, H. (2018). Nanophotonic Platforms for Enhanced Chiral Sensing. ACS Photonics, 5(7), 2669-2675. doi:10.1021/acsphotonics.8b00270Mohammadi, E., Tavakoli, A., Dehkhoda, P., Jahani, Y., Tsakmakidis, K. L., Tittl, A., & Altug, H. (2019). Accessible Superchiral Near-Fields Driven by Tailored Electric and Magnetic Resonances in All-Dielectric Nanostructures. ACS Photonics, 6(8), 1939-1946. doi:10.1021/acsphotonics.8b01767Pellegrini, G., Finazzi, M., Celebrano, M., Duò, L., & Biagioni, P. (2017). Chiral surface waves for enhanced circular dichroism. Physical Review B, 95(24). doi:10.1103/physrevb.95.241402Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025Nie, X., Ryckeboer, E., Roelkens, G., & Baets, R. (2017). CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform. Optics Express, 25(8), A409. doi:10.1364/oe.25.00a409Petersen, J., Volz, J., & Rauschenbeutel, A. (2014). Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science, 346(6205), 67-71. doi:10.1126/science.1257671Coles, R. J., Price, D. M., Dixon, J. E., Royall, B., Clarke, E., Kok, P., … Makhonin, M. N. (2016). Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nature Communications, 7(1). doi:10.1038/ncomms11183Gong, S.-H., Alpeggiani, F., Sciacca, B., Garnett, E. C., & Kuipers, L. (2018). Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science, 359(6374), 443-447. doi:10.1126/science.aan8010Le Kien, F., Busch, T., Truong, V. G., & Nic Chormaic, S. (2017). Higher-order modes of vacuum-clad ultrathin optical fibers. Physical Review A, 96(2). doi:10.1103/physreva.96.023835Picardi, M. F., Bliokh, K. Y., Rodríguez-Fortuño, F. J., Alpeggiani, F., & Nori, F. (2018). Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes. Optica, 5(8), 1016. doi:10.1364/optica.5.001016Abujetas, D. R., & Sánchez-Gil, J. A. (2020). Spin Angular Momentum of Guided Light Induced by Transverse Confinement and Intrinsic Helicity. ACS Photonics, 7(2), 534-545. doi:10.1021/acsphotonics.0c00064Bliokh, K. Y., & Nori, F. (2012). Transverse spin of a surface polariton. Physical Review A, 85(6). doi:10.1103/physreva.85.061801Alizadeh, M. H., & Reinhard, B. M. (2015). Enhanced Optical Chirality through Locally Excited Surface Plasmon Polaritons. ACS Photonics, 2(7), 942-949. doi:10.1021/acsphotonics.5b00151Nechayev, S., Barczyk, R., Mick, U., & Banzer, P. (2019). Substrate-Induced Chirality in an Individual Nanostructure. ACS Photonics, 6(8), 1876-1881. doi:10.1021/acsphotonics.9b00748Petronijevic, E., & Sibilia, C. (2019). Enhanced Near-Field Chirality in Periodic Arrays of Si Nanowires for Chiral Sensing. Molecules, 24(5), 853. doi:10.3390/molecules24050853Romero-García, S., Merget, F., Zhong, F., Finkelstein, H., & Witzens, J. (2013). Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. Optics Express, 21(12), 14036. doi:10.1364/oe.21.014036Espinosa-Soria, A., & Martinez, A. (2016). Transverse Spin and Spin-Orbit Coupling in Silicon Waveguides. IEEE Photonics Technology Letters, 28(14), 1561-1564. doi:10.1109/lpt.2016.2553841Poulikakos, L. V., Thureja, P., Stollmann, A., De Leo, E., & Norris, D. J. (2018). Chiral Light Design and Detection Inspired by Optical Antenna Theory. Nano Letters, 18(8), 4633-4640. doi:10.1021/acs.nanolett.8b00083Pfeiffer, M. H. P., Herkommer, C., Liu, J., Morais, T., Zervas, M., Geiselmann, M., & Kippenberg, T. J. (2018). Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 24(4), 1-11. doi:10.1109/jstqe.2018.2808258Almeida, V. R., Xu, Q., Barrios, C. A., & Lipson, M. (2004). Guiding and confining light in void nanostructure. Optics Letters, 29(11), 1209. doi:10.1364/ol.29.001209Barrios, C. A., Gylfason, K. B., Sánchez, B., Griol, A., Sohlström, H., Holgado, M., & Casquel, R. (2007). Slot-waveguide biochemical sensor. Optics Letters, 32(21), 3080. doi:10.1364/ol.32.003080Choi, J. S., & Cho, M. (2012). Limitations of a superchiral field. Physical Review A, 86(6). doi:10.1103/physreva.86.063834Kramer, C., Schäferling, M., Weiss, T., Giessen, H., & Brixner, T. (2017). Analytic Optimization of Near-Field Optical Chirality Enhancement. ACS Photonics, 4(2), 396-406. doi:10.1021/acsphotonics.6b00887Gansel, J. K., Thiel, M., Rill, M. S., Decker, M., Bade, K., Saile, V., … Wegener, M. (2009). Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science, 325(5947), 1513-1515. doi:10.1126/science.1177031Gansel, J. K., Wegener, M., Burger, S., & Linden, S. (2010). Gold helix photonic metamaterials: A numerical parameter study. Optics Express, 18(2), 1059. doi:10.1364/oe.18.001059Yang, Z., Zhao, M., & Lu, P. (2011). Improving the signal-to-noise ratio for circular polarizers consisting of helical metamaterials. Optics Express, 19(5), 4255. doi:10.1364/oe.19.004255Schäferling, M., Yin, X., Engheta, N., & Giessen, H. (2014). Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources. ACS Photonics, 1(6), 530-537. doi:10.1021/ph5000743Esposito, M., Tasco, V., Cuscunà, M., Todisco, F., Benedetti, A., Tarantini, I., … Passaseo, A. (2014). Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies. ACS Photonics, 2(1), 105-114. doi:10.1021/ph500318pJi, R., Wang, S.-W., Liu, X., Guo, H., & Lu, W. (2016). Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism. ACS Photonics, 3(12), 2368-2374. doi:10.1021/acsphotonics.6b00575Kosters, D., de Hoogh, A., Zeijlemaker, H., Acar, H., Rotenberg, N., & Kuipers, L. (2017). Core–Shell Plasmonic Nanohelices. ACS Photonics, 4(7), 1858-1863. doi:10.1021/acsphotonics.7b00496Woźniak, P., De Leon, I., Höflich, K., Haverkamp, C., Christiansen, S., Leuchs, G., & Banzer, P. (2018). Chiroptical response of a single plasmonic nanohelix. Optics Express, 26(15), 19275. doi:10.1364/oe.26.019275Höflich, K., Feichtner, T., Hansjürgen, E., Haverkamp, C., Kollmann, H., Lienau, C., & Silies, M. (2019). Resonant behavior of a single plasmonic helix. Optica, 6(9), 1098. doi:10.1364/optica.6.001098Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370Thiel, M., Decker, M., Deubel, M., Wegener, M., Linden, S., & von Freymann, G. (2007). Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals. Advanced Materials, 19(2), 207-210. doi:10.1002/adma.200601497Thiel, M., von Freymann, G., & Wegener, M. (2007). Layer-by-layer three-dimensional chiral photonic crystals. Optics Letters, 32(17), 2547. doi:10.1364/ol.32.002547Singh, H. J., & Ghosh, A. (2018). Large and Tunable Chiro-Optical Response with All Dielectric Helical Nanomaterials. ACS Photonics, 5(5), 1977-1985. doi:10.1021/acsphotonics.7b01455Espinosa-Soria, A., Griol, A., & Martínez, A. (2016). Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. Optics Express, 24(9), 9592. doi:10.1364/oe.24.009592Espinosa-Soria, A., Pinilla-Cienfuegos, E., Díaz-Fernández, F. J., Griol, A., Martí, J., & Martínez, A. (2018). Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip. ACS Photonics, 5(7), 2712-2717. doi:10.1021/acsphotonics.8b00447Yin, X., Schäferling, M., Metzger, B., & Giessen, H. (2013). Interpreting Chiral Nanophotonic Spectra: The Plasmonic Born–Kuhn Model. Nano Letters, 13(12), 6238-6243. doi:10.1021/nl403705kFilippov, V. N., Kotov, O. I., & Nikolayev, V. M. (1990). Measurement of polarisation beat length in single-mode optical fibres with a polarisation modulator. Electronics Letters, 26(10), 658-660. doi:10.1049/el:19900431Zhang, Q., Hernandez, T., Smith, K. W., Hosseini Jebeli, S. A., Dai, A. X., Warning, L., … Link, S. (2019). Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science, 365(6460), 1475-1478. doi:10.1126/science.aax5415Schäferling, M., Engheta, N., Giessen, H., & Weiss, T. (2016). Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration. ACS Photonics, 3(6), 1076-1084. doi:10.1021/acsphotonics.6b00147García-Meca, C., Lechago, S., Brimont, A., Griol, A., Mas, S., Sánchez, L., … Martí, J. (2017). On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications, 6(9), e17053-e17053. doi:10.1038/lsa.2017.5
    corecore